Orientability of Real Toric Varieties

نویسندگان

  • JENYA SOPRUNOVA
  • FRANK SOTTILE
چکیده

We characterize the orientability of an abstract real toric variety as well as the orientability of a toric subvariety of a sphere. We also determine the number of components of the smooth locus of a toric variety. These results are proven for an extension of the Davis-Januskiewicz notion of a small cover to singular spaces. We characterize the orientability of toric varieties associated to posets, and discuss an application to the study of real solutions to systems of polynomial equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties

The real solutions to a system of sparse polynomial equations may be realized as a fiber of a projection map from a toric variety. When the toric variety is orientable, the degree of this map is a lower bound for the number of real solutions to the system of equations. We strengthen previous work by characterizing when the toric variety is orientable. This is based on work of Nakayama and Nishi...

متن کامل

Toric ideals, real toric varieties, and the moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties and the moment map. In particular, we explain the relation between linear precision and the moment map.

متن کامل

Toric ideals, real toric varieties, and the algebraic moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties. In particular, we explain the relation between linear precision and a particular linear projection we call the algebraic moment map.

متن کامل

The Cohomology Groups of Real Toric Varieties Associated to Weyl Chambers of Type C and D

Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated to the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated to the Weyl chambers of type Cn and Dn, completing the computation for all classical types.

متن کامل

Rational versus Real Cohomology Algebras of Low-dimensional Toric Varieties

We show that the real cohomology algebra of a compact toric variety of complex dimension 2 is completely determined by the combinatorial data of its deening fan. Surprisingly enough, this is no longer the case when taking rational coeecients. Moreover, we show that neither the rational nor the real or complex cohomology algebras of compact quasi-smooth toric varieties are combinatorial invarian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011